The geometry of the ribosomal polypeptide exit tunnel.

نویسندگان

  • N R Voss
  • M Gerstein
  • T A Steitz
  • P B Moore
چکیده

The geometry of the polypeptide exit tunnel has been determined using the crystal structure of the large ribosomal subunit from Haloarcula marismortui. The tunnel is a component of a much larger, interconnected system of channels accessible to solvent that permeates the subunit and is connected to the exterior at many points. Since water and other small molecules can diffuse into and out of the tunnel along many different trajectories, the large subunit cannot be part of the seal that keeps ions from passing through the ribosome-translocon complex. The structure referred to as the tunnel is the only passage in the solvent channel system that is both large enough to accommodate nascent peptides, and that traverses the particle. For objects of that size, it is effectively an unbranched tube connecting the peptidyl transferase center of the large subunit and the site where nascent peptides emerge. At no point is the tunnel big enough to accommodate folded polypeptides larger than alpha-helices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Side-chain recognition and gating in the ribosome exit tunnel.

The ribosome is a large complex catalyst responsible for the synthesis of new proteins, an essential function for life. New proteins emerge from the ribosome through an exit tunnel as nascent polypeptide chains. Recent findings indicate that tunnel interactions with the nascent polypeptide chain might be relevant for the regulation of translation. However, the specific ribosomal structural feat...

متن کامل

Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence.

Ribosome-associated protein biogenesis factors (RPBs) act during a short but critical period of protein biogenesis. The action of RPBs starts as soon as a nascent polypeptide becomes accessible from the outside of the ribosome and ends upon termination of translation. In yeast, RPBs include the chaperones Ssb1/2 and ribosome-associated complex, signal recognition particle, nascent polypeptide-a...

متن کامل

The impact of ribosomal interference, codon usage, and exit tunnel interactions on translation elongation rate variation

Previous studies have shown that translation elongation is regulated by multiple factors, but the observed heterogeneity remains only partially explained. To dissect quantitatively the different determinants of elongation speed, we use probabilistic modeling to estimate initiation and local elongation rates from ribosome profiling data. This model-based approach allows us to quantify the extent...

متن کامل

A Low Cost Numerical Simulation of a Supersonic Wind-tunnel Design

In the present paper, a supersonic wind-tunnel is designed to maintain a flow with Mach number of 3 in a 30cm×30cm test section. An in-house CFD code is developed using the Roe scheme to simulate flow-field and detect location of normal shock in the supersonic wind-tunnel. In the Roe scheme, flow conditions at inner and outer sides of cell faces are determined using an upwind biased algorithm. ...

متن کامل

The force-sensing peptide VemP employs extreme compaction and secondary structure formation to induce ribosomal stalling

Interaction between the nascent polypeptide chain and the ribosomal exit tunnel can modulate the rate of translation and induce translational arrest to regulate expression of downstream genes. The ribosomal tunnel also provides a protected environment for initial protein folding events. Here, we present a 2.9 Å cryo-electron microscopy structure of a ribosome stalled during translation of the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 360 4  شماره 

صفحات  -

تاریخ انتشار 2006